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Abstract
A two-decade development of dedicated high-performance instrumentation at major neutron
and synchrotron radiation sources has stimulated significant growth in the number and quality
of spectroscopic studies of the collective dynamics of fluids, making Brillouin scattering, in its
neutron and x-ray ‘versions’, a fast growing field of research. However, in contrast with the
large amount of work done for wavevector Q lower than the position Qp of the main peak of the
static structure factor S(Q), very little is known about the behaviour of acoustic excitations at
much larger Q. We present molecular-dynamics simulation results for the translational part of
the dynamic structure factor of the molecular liquid CD4 up to high Q values (Q ∼ 4Qp),
analysed through the fitting of the viscoelastic model line shape. The analysis, carried out by
applying the concepts described in a recent paper, shows that underdamped sound excitations
persist at least up to such high Q values, in agreement with the existence of the distinct part of
S(Q), with the exception of a restricted interval around Qp where the collective oscillations
become overdamped.

1. Introduction

The microscopic dynamics of fluids is usually described in the
language of the van Hove distribution functions [1–3], from
which two very useful quantities are defined: the intermediate
scattering function F(Q, t), i.e. the autocorrelation function
of density fluctuations with wavevector magnitude Q, and its
frequency spectrum S(Q, ω), i.e. the dynamic structure factor.
(Due to its macroscopically isotropic behaviour, in a fluid there
is no dependence on the direction of the vector Q.) S(Q, ω) is
particularly important since, besides being a typical output of
computer simulations and the goal of theoretical derivations,
it is also closely linked to the scattering intensity revealed in
spectroscopic measurements, where h̄ω and h̄ Q are identified
with the energy and momentum transferred from the probe to
the sample in the scattering process.

In this paper we will be specifically concerned with
the investigation of collective acoustic excitations, which are
well-known to determine the shape of S(Q, ω) at low and
intermediate Q values. The study of sound propagation in
the microscopic domain, and of the damping processes that
accompany it, has been a typical application of laser sources
to S(Q, ω) determinations through the detection of Brillouin
light scattering spectra. However, with a probe wavelength in
the range of visible radiation, density fluctuations can only be
explored in the limit of very low Q. The fluid is then seen as a
continuum and the microscopic discreteness of matter does not
come into play, a situation well accounted for by the concepts
of hydrodynamics.

There are strong motivations for extending these studies
towards much higher Q. Moving away from the limit case
of hydrodynamics, the dynamical regime of a fluid evolves
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Table 1. Fluids whose collective dynamics has been studied by means of neutron or x-ray inelastic scattering. Labels n and x denote the two
techniques.

Years
Rare gases and
liquids, mixtures

Molecular gases and
liquids

Liquid metals and
alloys, metal vapours

Molten salts and oxides,
solutions, and other fluids

Until 1990 n Ne, Ar H2, N2, CD3OD Pb, Cs, Rb LiCl, KCl, RbCl

1991–1995 n He–Ne SO2, CCl4, D2, D2O Ga, Li, Rb, Rb–(RbBr)
x H2O

1996–2000 n D2, H2, D2O Rb, Ga, K, Ni, Rb–Sb, K–Cs, Li4Pb
x He H2O, NH3 Al, Li, Na

2001–2005 n He–Ne CD4, D2O K, Hg, Ga, Na–Sn Li(ND3)4

x Ne D2, H2, H2O, HF, C3H8O3 Ga, Na, Hg, K, Sn, Si NaCl, NaI, Al2O3, Li(NH3)4

Since 2006 n CO2, DF Ge, Rb, Bi, Li–Bi, Te
x N2, O2, H2O, CH3OH Ti, In, Te MgAl2O4

towards that of a discrete collection of individual particles, with
a smooth transition ruled by the increase of the product Q�,
where � has to be some characteristic length scale related to
the distance between particles [4]. Then, in light scattering
experiments, a non-hydrodynamic regime can only be reached
by increasing �, thus restricting the investigation to dilute
gases [5]. Nevertheless, evidence has been collected during
the years of the persistence of sound-like excitations beyond
the upper limit of hydrodynamic behaviour in many dense
liquids [6–9].

The increasing interest in the study of acoustic
excitations at wavelengths comparable with the typical
interparticle distances of a dense fluid has prompted continuous
efforts aimed at developing instrumentation at neutron and
synchrotron radiation sources. Inelastic scattering of neutrons
and x-rays have in fact proved to be the most effective
and productive tools for S(Q, ω) measurements, when wide
ranges of Q and ω need to be investigated. Since visible-
light scattering attains Q values of the order 0.01 nm−1,
and conventional neutron scattering hardly applies for Q <

2 nm−1, much effort has been spent to extend spectroscopic
studies to the previously unexplored Q gap between the two
techniques. The denomination ‘Brillouin scattering’, initially
referring to light scattering only, has then become a common
label for such experimental methods, whatever probe radiation
is applied. Besides neutrons and x-rays, mention is also to be
made of the very recently demonstrated Brillouin scattering of
ultraviolet radiation [10].

Exploiting technical advances, much experimental work
has been done in the last 20 years on the collective dynamics
of various fluids, and the field is quite an active one nowadays,
as it appears from table 1, where we list systems studied with
either neutron or x-ray Brillouin scattering only, warning the
reader that such a list might not be exhaustive. In table 1
we omitted all items referring to some particular classes of
fluids such as supercooled or confined systems, not to speak
of solid amorphous materials such as glasses. An extended list
of references to the works quoted in the table can be found
in [11].

In all these studies, the analysis of experimental
results was performed by fitting to the data a spectral
function obtained from a suitable model of the classical
S(Q, ω), appropriately modified to account for detailed-
balance asymmetry and instrumental resolution broadening.

Usually, both the data and the models are presented in the
form of constant-Q frequency spectra, and model fitting is
performed separately at each investigated Q value, so that for
each fit parameter an experimental Q-dependence is obtained.

The understanding of collective excitations in fluids
would clearly benefit from a critical comparison of the
results obtained by fitting different models on the same data.
Depending on the nature and the thermodynamic state of the
fluid, and on the explored Q range, it was often shown in the
literature that different expressions of S(Q, ω) are needed for
a satisfactory description of the measured spectra. In the liquid
phase, for example, the generalization of the hydrodynamic
Rayleigh–Brillouin (RB) triplet line shape has usually been
found to account rather well for the low Q situation (say, up
to about a few nm−1), while expressions obtained by assuming
a viscoelastic-like dynamics often provide good fits when Q
approaches Qp, i.e. the position of the main peak of the static
structure factor S(Q). (See section 3 for precise definitions of
these model line shapes.)

In fact, other line shapes are also applied as fit functions,
but in this paper we will only refer to the two just mentioned
models. The main reason for this restriction is the fact
that they offer a very good example of a general problem
arising in the interpretation of the whole body of experimental
findings on the subject, namely, that the comparison of results
obtained with different models is hindered by the fact that their
formulation and parametrization are not reduced to a common
scheme. It turns out, indeed, that these two models are usually
written in terms of parameter sets whose correspondence is far
from being evident; in particular, this fact has led to the use of a
variety of criteria for the determination of the dispersion curve,
i.e. the Q-dependence of the acoustic excitation frequency.

In a recent paper [11] we addressed the problem of the
lack of a unified scheme for the discussion and comparison
of the S(Q, ω) models most frequently employed in the
analysis of Brillouin scattering data. We showed there that
all these models can be reformulated in a unified way and
that, as a consequence, the excitation frequency can be
univocally defined and directly obtained from the fit of any of
them. Moreover, a detailed understanding of the shape of the
dispersion curve was achieved.

In parallel with the mentioned experimental progress,
molecular-dynamics (MD) simulation has also grown in power
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due to the impressive increase of computing performance. MD
has then become an extremely important tool for investigating
microscopic properties, and the dynamics of liquids has long
been a prototypical field of application of such a simulation
technique.

In conjunction with a neutron scattering experiment
on the collective dynamics of dense liquid deuteromethane
(CD4) [12], performed in the Q range between 2 and 15 nm−1,
we also carried out MD simulations in a standard NVE
ensemble of 4000 molecules interacting through the ab initio
multi-site potential by Tsuzuki et al [13]. The chosen
thermodynamic state is close to the triple point (T = 97.7 K
and n = 16.6 nm−3 are the sample temperature and molecular
number density). Both experimental and simulation data
reported in [12] were analysed by fitting a hydrodynamic-like
Rayleigh–Brillouin triplet line shape. A viscoelastic model
was also fitted to experimental data in a later work [14].

The MD simulation, however, also offers the possibility
of computing quantities that are not accessed experimentally,
such as the three partial dynamic structure factors Sαβ(Q, ω),
where α and β are either C or D for carbon and deuterium
atoms. As an example of application of the concepts and
formulas discussed in [11], we exploited there this important
advantage by focusing on the study of the translational
collective dynamics, taking directly SCC(Q, ω) as input data
for our analysis.

Most neutron and x-ray works focus on the Q range
between the minimum attainable Q (say, of the order of
0.1 nm−1) and some Q value near Qp (around 20 nm−1).
Conversely, little is known, even in simple liquids, about the
behaviour of sound propagation at much larger Q. Apart
from energy resolution considerations, this is probably due
to the fact that the acoustic excitations quickly lose visibility,
with increasing Q, since they give rise to inelastic spectral
features discernible by the naked eye in a rather limited low-
Q range only. This situation is often referred to as that of
overdamped, non-propagating, sound modes. In [11], however,
we established rigorous criteria for assessing the existence and
the damping properties of such excitations. Here we apply
those criteria to the analysis of the centre-of-mass dynamics of
CD4, as obtained from the mentioned MD simulations, over a
much more extended Q range than that reported before [11],
reaching a value of 67 nm−1, which is nearly four times
larger than Qp. In this paper we report on such a study. In
section 2 we recall the basic theoretical tools, while the used
fit models are briefly presented in section 3. Section 4 deals
with the method used to arrive at a quantitative assessment of
the excitation frequencies and damping. Finally, sections 5
and 6 contain a discussion of the obtained results and the
conclusions, respectively.

2. Theoretical framework

We will briefly summarize in this section the main results
exposed in detail in [11]. The commonly adopted theoretical
approach for the description of the density autocorrelation
function in a classical fluid is expressed in the language of the

memory functions discussed, for example, in [2]. A Langevin-
type equation is obtained for the time evolution, at constant Q,
of the intermediate scattering function:

F̈(Q, t) +
∫ t

0
dt ′ M(Q, t − t ′)Ḟ(Q, t ′) + 〈ω2

Q〉F(Q, t) = 0,

(1)
where the dots denote time derivatives, M(Q, t) is the second-
order memory function,

〈ω2
Q〉 =

∫ +∞

−∞
dω ω2 I (Q, ω) = kBT Q2

mS(Q)
(2)

is the second frequency moment of the normalized dynamic
structure factor I (Q, ω) = S(Q, ω)/S(Q), kB is the
Boltzmann constant and m is the mass of the particles [2].

Through the use of Laplace transforms, here denoted by
a tilde, (1) can be solved, with initial conditions F(Q, 0) =
S(Q) and Ḟ(Q, 0) = 0, to give

F̃(Q, z)

S(Q)
=

[
z + 〈ω2

Q〉
z + M̃(Q, z)

]−1

. (3)

This solution is exact but somehow formal, since the problem is
shifted at the level of the (unknown) memory function, but the
theory, by itself, gives no prescriptions for the time dependence
of M(Q, t). Nevertheless, something is gained with the use
of (3), one of the appealing features of the memory function
approach being that very simple expressions of M(Q, t) can
produce realistic models for the spectral distribution [2, 11].
This is given by [2]

I (Q, ω) = 1

π
Re

F̃(Q, iω)

S(Q)
. (4)

A general expression for the spectrum is then obtained as

I (Q, ω) = 1

π

〈ω2
Q〉M ′(Q, ω)

[ω2 − 〈ω2
Q〉 + ωM ′′(Q, ω)]2 + [ωM ′(Q, ω)]2

,

(5)
where M ′(Q, ω) and M ′′(Q, ω) are the real and imaginary
part, respectively, of M̃(Q, iω).

All the typically used models of I (Q, ω) share the
common property that they are derivable from memory
functions including a δ-function and/or one or more
exponential time decays. In [11] it was shown that in
this case (3) can be written in the form F̃(Q, z)/S(Q) =
V (z)/W (z), where V and W are polynomials in the complex
variable z (with real, Q-dependent, coefficients) and the degree
of W , denoted here by p, is the number of exponential terms in
M(Q, t) plus two. At any given Q, if z j (with j = A, B, . . .)
are the p solutions of the equation W (z) = 0 [11], one can also
write

F̃(Q, z)

S(Q)
=

∑
j

I j

z − z j
, (6)

so that, using (4)

I (Q, ω) = 1

π

∑
j

−Re I j Re z j + (ω − Im z j )Im I j

(Re z j)2 + (ω − Im z j )2
, (7)
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where the (complex) amplitudes I j can be explicitly calculated.
Equation (6) corresponds to an intermediate scattering function
F(Q, t)/F(Q, 0) = ∑

j I j exp(z j t), and this formula shows
that the real part of all the roots z j must be negative for F(Q, t)
to decay to zero at large t . The Q dependence of I j and z j has
been, and will be in the following, omitted for ease of notation.

At low enough Q, all models of M(Q, t) are found to
produce two complex solutions which are conjugate to each
other, denoted as zA,B = −zs ± iωs (choosing ωs > 0). The
corresponding amplitudes, complex conjugated as well, are
written as IA,B = Is(1 ∓ ibs). The remaining p − 2 roots,
labelled with j = C, D, . . ., and the corresponding amplitudes
are real. The spectrum (7) can then be explicitly written as

I (Q, ω) = 1

π

[ ∑
j=C,D...

I j (−z j )

ω2 + (−z j )2

]

+ 1

π
Is

[
zs + bs(ω + ωs)

(ω + ωs)2 + z2
s

+ zs − bs(ω − ωs)

(ω − ωs)2 + z2
s

]
, (8)

where the last two terms define two Lorentzian lines with half
width zs, centred at ω = ±ωs, and distorted by the presence
of the ‘asymmetry parameter’ bs. These are the Brillouin
lines, that are the spectral signature of the acoustic modes (the
subscript s stands for ‘sound’). The p − 2 terms in the sum are
also Lorentzian lines, symmetric and centred at ω = 0, having
as half widths the negative of the real roots of the equation
W (z) = 0. It is important to note that the asymmetry of
the side lines is required to ensure a finite second frequency
moment of I (Q, ω). The time correlation corresponding to the
spectrum (8) has the form

F(Q, t)

F(Q, 0)
=

[ ∑
j=C,D...

I j exp(z j t)

]

+ 2Is exp(−zst)
cos(ωst − ϕ)

cos ϕ
, (9)

that is the sum of p − 2 exponentially decaying terms plus one
exponentially modulated oscillation with a phase shift given by
tan ϕ = bs.

We have already remarked that no clue for modelling the
memory function is provided by theoretical arguments. There
is, however, an exception in the limit case Q → 0, where
the linearized-hydrodynamics theory of a fluid continuum
leads [1, 15, 16] to the formulation of the Rayleigh–Brillouin
expression of I (Q, ω), which, actually, accounts very well
for the observed spectra of dense fluids in the whole Q range
typical of light scattering studies. Indeed, such a line shape can
be obtained by assuming

M(Q, t) = 2νQ2δ(t) + (γ0 − 1)〈ω2
0〉 exp(−γ0 DT Q2t). (10)

Here ν = [(4/3)ηs + ηb]/(mn) is the kinematic longitudinal
viscosity, defined through the shear (ηs) and bulk (ηb)
viscosities, γ0 = cp/cv is the ratio of the constant-pressure
to the constant-volume specific heat, DT = λ/(ncp) is the
thermal diffusivity, λ is the thermal conductivity, and 〈ω2

0〉 is
the Q → 0 limit of 〈ω2

Q〉 obtained from (2) by replacing
S(Q) with S(0) = nkBTχsγ0 where χs is the adiabatic

compressibility. If cs denotes the adiabatic sound velocity, it
is easily shown that 〈ω2

0〉 = c2
s Q2/γ0.

Proceeding as outlined above, and noting that (10) implies
p = 3, one recovers immediately the well-known expression
of the RB triplet [1–3, 15]

I (Q, ω) = 1

π

[
Ih

zh

ω2 + z2
h

+ Is
zs + bs(ω + ωs)

(ω + ωs)2 + z2
s

+ Is
zs − bs(ω − ωs)

(ω − ωs)2 + z2
s

]
, (11)

where the subscript h, standing for ‘heat’, is attached to
the parameters of the central Lorentzian line that reflects
the presence of a thermal contribution to the memory
function (10). In particular, zh is the negative of the real root
zC of the equation W (z) = 0 and Ih is the corresponding
amplitude. Explicit expressions for Ih, Is and bs are given
in [11], with Ih + 2Is = 1.

The parameters entering (11) have explicit expressions
for Q → 0, which can be written as series expansions in
powers of Q. To lowest order, one finds zh = DT Q2,
zs = [(γ0 − 1)DT + ν]Q2/2, ωs = cs Q, Ih = (1 − 1/γ0),
Is = 1/(2γ0), and bs = [3(γ0 − 1)DT + ν]Q/(2cs). On the
other hand, for an arbitrary Q-value, the explicit solution of the
equation W (z) = 0 is required.

3. Fit models

If applied to the Q range typical of neutron or x-ray scattering,
the RB triplet does not provide a suitable description of
experimental data. With the actual values of thermodynamic
and transport coefficients of real fluids, it turns out that the
Q range of existence of two complex roots is much smaller
than what is found from the spectra of real systems [11]. Such
a failure cannot be an unexpected result, if one remembers
that the RB line shape is derived under the hydrodynamic
assumption of very-long-wavelength excitations. Nevertheless,
it appears natural to construct a model for I (Q, ω) retaining
the same functional expression for M(Q, t), but letting its
parameters vary freely with Q. We call this the ‘generalized
RB triplet’ (GRB) model, whose memory function reads

M(Q, t) = 2B(Q)δ(t) + (γ (Q) − 1)〈ω2
Q〉 exp[−�T(Q)t],

(12)
where the four parameters are unknown functions of Q, which
we imagine to be represented by series expansions with lowest-
order terms in agreement with the exact RB theory. Thus,
for Q → 0 we have γ (Q) ∼ γ0, B(Q) ∼ νQ2, �T(Q) ∼
γ0 DT Q2 and 〈ω2

Q〉 ∼ 〈ω2
0〉.

I (Q, ω) is still given by (11), but zh, zs, ωs, Ih, Is and bs

will now have a Q-dependence different, in general, from that
of linearized hydrodynamics, and to be determined by a best-
fit procedure. From the fitted quantities the original parameters
of (12) can also be obtained, as shown in [11].

The second model considered here is the so-called
viscoelastic model. It should be noted that, actually, different
expressions have been used under this denomination. They
all can be related to the idea of allowing for a frequency
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dependence of thermodynamic or transport coefficients
(usually the viscosity, from which the name ‘viscoelastic’
originally derives). Here we will refer to one of these models
only, defined by the memory function [2]

M(Q, t) = [ω2
L(Q) − γ (Q)〈ω2

Q〉] exp[−t/τ(Q)]
+ (γ (Q) − 1)〈ω2

Q〉 exp[−�T(Q)t], (13)

where ω2
L(Q) = 〈ω4

Q〉/〈ω2
Q〉 and 〈ω4

Q〉 is the fourth frequency
moment of I (Q, ω). Equation (13) differs from (12) for the
presence of another exponential term with time constant τ (Q)

replacing the δ-function term of (12). This ensures a finite
fourth moment, contrary to what happens in the RB case.

Here too, just as in (12), all parameters are unknown
functions of Q except for the Q → 0 behaviour, which is
the same as in the GRB case for γ (Q), �T(Q), and 〈ω2

Q〉.
Moreover, ω2

L(Q) ∼ c2
L Q2 where cL is the Q → 0 value of

the infinite-frequency sound velocity [1], while 1/τ(Q) goes,
for Q → 0, to the limit 1/τ0 = (c2

L − c2
s )/ν [2, 11].

If one retraces in this case all the steps that lead to (11), by
noting that (13) implies p = 4, one immediately arrives at the
line shape

I (Q, ω) = 1

π

[
Ih

zh

ω2 + z2
h

+ I2
z2

ω2 + z2
2

+ Is
zs + bs(ω + ωs)

(ω + ωs)2 + z2
s

+ Is
zs − bs(ω − ωs)

(ω − ωs)2 + z2
s

]
(14)

which has a four-line structure that, compared to (11), has
one more central Lorentzian line with amplitude I2 and a half
width z2 given by the negative of the second real root zD of
the equation W (z) = 0. All amplitudes can be expressed by
formulae analogous to those valid in the GRB case [11].

Equations (11) and (14) display the strong similarity that
underlies all spectral shapes deriving from memory functions
defined in terms of exponential and/or δ functions. The
advantage of such a common formulation is that parameters
denoted by the same symbol in both models do have the
same physical meaning and the same Q → 0 behaviour,
since exact hydrodynamics has to be the common limit of
both expressions. Then, by comparison of (11) and (14), one
immediately sees that I2 goes to zero with decreasing Q, as
explicitly shown in [11]. However, such a similarity has not
been recognized and exploited, since in all the recent literature
the viscoelastic model is written in a different way, namely by
inserting in (5) the expressions

M ′(Q, ω) = 1

τ (Q)
X1(Q, ω) + �T(Q)X2(Q, ω),

M ′′(Q, ω) = −ω[X1(Q, ω) + X2(Q, ω)],

where

X1(Q, ω) = [ω2
L(Q) − γ (Q)〈ω2

Q〉]
ω2 + ( 1

τ(Q)
)2

,

X2(Q, ω) = [(γ (Q) − 1)〈ω2
Q〉]

ω2 + �2
T(Q)

and using as fit parameters the coefficients of the memory
function (13). This way of formulating the viscoelastic model

does not offer a clear view of its line shape and of what it has
in common with, and where it differs from, the GRB model. It
tends, therefore, to mask the possible existence of a transition
from a Q range where a hydrodynamic-like description applies
(though outside a true hydrodynamic regime) to a Q range
where viscoelasticity may begin to set on. In such a case,
following the Q behaviour of fit parameters common to both
models is of great help in understanding the dynamics of the
acoustic modes. An example of such a situation was shown
in [11] and will be recalled in section 5.

4. The dispersion curve

Formulating all fit models in the unified form (6) and using
the common parametrization displayed in (8) has another
important advantage, because it leads to a full understanding of
the dispersion curve of the acoustic excitations [11]. In order
to see it clearly, it is useful to establish an analogy between
these and the motion of a one-dimensional mechanical damped
harmonic oscillator.

If any memory effects were absent, i.e. if M(Q, t) ∝ δ(t),
(1) would be formally identical to the equation of motion of
such an oscillator, namely ẍ(t) + 2μẋ(t) + �2

0x(t) = 0,
where �0 is the characteristic frequency of the system and
μ is the friction coefficient. For μ < �0 the solution

is a damped oscillation at the frequency ω =
√

�2
0 − μ2,

which identifies �0 as the frequency of the oscillations when
μ = 0. If, however, μ is increased up to and above �0,
the system crosses the point of ‘critical damping’ and enters
the ‘overdamping’ regime, where oscillatory motion no longer
takes place. The mathematical similarity between the two
phenomena suggests a natural criterion for the definition of
the Q range where sound modes have a propagating nature,
namely the one corresponding to the ‘underdamping’ situation,
where the equation W (z) = 0 has a pair of complex conjugate
roots. Moreover, in such a case, the acoustic excitation
frequency is identified with the frequency ωs of the oscillating
part of F(Q, t).

It would be of little use if the fruitful analogy between
mechanical oscillators and acoustic excitations at a given Q
were established only in the unphysical case of absence of
memory, since, as shown in section 3, realistic models for
Brillouin spectra correspond to memory functions that do not
simply reduce to a δ-function in time. We showed in [11]
that this analogy can indeed be extended to such realistic
cases without introducing any approximation, since, for any
dynamical situation such that (6) holds with two complex z j s,
the dispersion curve obeys the relationship

ωs =
√

�2 − z2
s (15)

where, at each Q, � is given by

�2 = γ (Q)〈ω2
Q〉

r(Q)
. (16)

In order to clarify the meaning of the function r(Q), we note
that (15) has the same square-root form recalled before for a

5
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damped harmonic oscillator. Thus, the mechanical analogy
introduced above is indeed extendable to all the models
characterized by (6), provided that the ‘undamped frequency’
� of the oscillator is correctly defined. Equation (16) shows
that this is possible through the use of r(Q) which acts as a
renormalization factor. The role of r(Q) is best appreciated if
one writes it as

r(Q) =
∏

j=C,D...

z j

z(0)
j

(17)

which also holds true for all models [11]. The symbol z(0)
j

stands for the lowest-order term in the Q power expansion
of z j , so that limQ→0 r(Q) = 1. It appears then that the
relaxation processes that give rise to the central lines in the
spectrum (the non-acoustic modes) also affect in a direct
way the propagating excitation frequencies (the sound modes),
through the determination of both � and zs.

We also observe that in order to use (15) one needs to
know various quantities that are either fitted parameters or
functions of them, and that the fit of any model line shape
parametrized as in (8) directly provides ωs itself as well.
In other words, (15) is useful not to determine ωs, but to
describe in detail its behaviour as a function of Q. We
showed in fact in [11] how, by means of (15), the shape of the
whole dispersion curve can be explained as the combination of
structural, thermal, and damping effects that can be separately
recognized.

From the above observations and the general validity
of (15) it follows that the normalized intermediate scattering
function (9) can be written as the sum of two terms:

F(Q, t)

F(Q, 0)
= Irel frel(Q, t) + 2Is fs(Q, t), (18)

where frel(Q, 0) = fs(Q, 0) = 1,

Irel = 1 − 2Is =
∑

j=C,D...

I j ,

frel(Q, t) is the (thermal and/or structural) relaxation part, and
the sound term fs(Q, t) obeys a damped-oscillator differential
equation. Such an equation describes both the under-and the
overdamping regime of the acoustic excitation. The latter
corresponds to the case where the two complex conjugated
roots zA, zB of the equation W (z) = 0 become real and
distinct. In both cases one has � = √

zAzB and zs =
−(zA + zB)/2, which shows that zs can be consistently defined
also in the case of overdamped excitations, i.e. where it exceeds
�. Underdamping occurs, instead, when � > zs, in agreement
with the fact that for any two real positive numbers x and y one
always has (x + y)/2 � √

xy, while for complex conjugate
x and y the inequality is reversed. The basic quantities
determining the damping state of the acoustic oscillation are
thus zs and �.

From the spectral point of view, overdamping is reflected
by the absence of Brillouin lines, which change into symmetric
Lorentzians of half widths −zA and −zB, also centred at zero
frequency and superimposed onto the quasielastic lines. It is
worthwhile to note that the finiteness of the second frequency
moment (and in the viscoelastic case of the fourth moment as
well) implies that the amplitudes of the various lines cannot be
all positive.

Figure 1. Ih (dots with error bars) and γ (open circles) from the fit of
the viscoelastic model including the thermal part (see (13) and (14)).

5. Results

We first recall here the results of the analysis of MD data
for CD4 in the range 2 < Q/nm−1 < 15, reported in [11].
Least-squares fits of both the generalized Rayleigh–Brillouin
and the viscoelastic model were performed. The results are
practically indistinguishable at very low Q, as expected, while
for Q larger than about 5 nm−1 a better agreement with MD
data was obtained with the viscoelastic model. The reason
for this is that this model permits a more accurate description
of the central peak, thanks to the presence of two Lorentzian
lines (see (14)), which turn out [11] to have rather different
widths. Fitting the GRB model to the same data requires,
instead, that we account for such a quasielastic peak with one
Lorentzian only, resulting in a lower-quality agreement with
the data in the Q range where the intensity I2 of the second
line in the viscoelastic model starts to contribute significantly
to the spectral intensity.

Based on these results, we considered it interesting to
check whether the viscoelastic model can still provide a valid
account of the simulated spectral shape at larger Q. Therefore
we extended the same fit procedure to the computed SCC(Q, ω)

for Q up to 67 nm−1. At all Qs, the fit has been performed in
the frequency range defined by the condition that the spectral
intensity remain above the value 10−3SCC(Q, 0). Figures 1–4
display the main results.

First of all we note (see figure 1) that for Q approaching
a value of about 40 nm−1, γ (Q) and Ih become very close
to unity and to zero, respectively. Considering (13) and (14),
both facts mean that the thermal contribution to the dynamics
is vanishing. From such Q values on, we have therefore
simplified the fit model by deleting the ‘heat’ mode. The
memory function (13) reduces then to a single exponential, and
the central peak of the spectrum contains only one Lorentzian
contribution. In the following figures, where we display results
for the whole studied Q range, it has to be remembered that for
Q > 37.5 nm−1 such a simpler viscoelastic model is applied.

Figure 2(a) shows the fitted static structure factor, which
displays the expected behaviour typical of dense fluids.
The oscillations around unity, though strongly reduced in
amplitude, persist at the highest Q, indicating that distinct
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Figure 2. (a) The static structure factor. Fitted values (with error bars
smaller than the symbols) are shown as dots. The line is from the
frequency integration of the dynamic structure factor. (b) The
normalized second frequency moment, evaluated from fitted
parameters (dots) and from the theoretical formula (2) (line through
the points).

intermolecular correlations are still present. The values
obtained by direct integration of SCC(Q, ω) in the whole
available frequency range, also shown in figure 2(a), agree very
well with the fitted ones. This confirms the very good quality
of the fit.

The same kind of agreement with the frequency-integrated
evaluation is found for the second frequency moment 〈ω2

Q〉.
This again witnesses the goodness of the fit, even more than
in the case of SCC(Q), because very high frequencies, which
are taken into account in the integration but are not included
in the fit range, have a larger weight in the determination
of the second than of the zeroth moment. Moreover, in the
case of 〈ω2

Q〉, another comparison is possible, namely with
the exact theoretical value given by (2). This is shown in
figure 2(b), where 〈ω2

Q〉 obtained from the fit parameters
(using (22) of [11]) appears to be in excellent agreement
with kBT Q2/mS(Q), which proves the reliability of our MD
spectra at all frequencies and wavevectors. Obviously, the
oscillatory behaviour of 〈ω2

Q〉 has opposite phase with respect
to that of SCC(Q).

The quantities related to the dispersion curve appear in
figure 3. In figure 3(a) we display zs and �, which also
feature an oscillating pattern. � always stays above zs, with
the exception of a narrow interval around Qp. Here, � is
slightly, but systematically, lower than zs, indicating that a
condition of overdamping sets on, with no propagation of the
acoustic waves. It also has to be noted that � and zs are

Figure 3. Acoustic excitations. (a) Parameters � (dots) and zs (open
circles) of the equivalent damped harmonic oscillator. Error bars of
� are visible only for Q ∼ Qp. Error bars of zs are comparable in
size to those of � but are not drawn for the sake of clarity.
(b) Dispersion curve (dots with error bars). The zero values around
Qp indicate the vanishing of the propagation frequency ωs.

Figure 4. Amplitudes of the relaxational (Irel , dots) and acoustic (Is,
open circles) parts of F(Q, t).

more difficult to determine accurately in this Q range, since
the sensitivity of the fit to such parameters clearly decreases
when the inelastic (Brillouin) lines move towards ω = 0 and
eventually merge with the central Lorentzian line(s) due to the
structural and/or thermal relaxation processes. As a result of
the Q dependence of � and zs, the dispersion curve plotted
in figure 3(b) shows the vanishing of ωs in the overdamping
region. The oscillations of SCC(Q) beyond the first one are
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reflected, via (15), (16) and (2), in the behaviour of ωs, to
which evident oscillations of zs also substantially contribute.
In particular, below Q � 30 nm−1, ωs shows a nicely regular
shape, somehow resembling the dispersion curve of acoustic
phonons in simple crystals. For instance, the first two maxima
of ωs have, to a good accuracy, the same height, although they
are related through (15) to quite different pairs of values of
� and zs. Whether this has some physical explanation or is
just a numerical coincidence we are not able to tell. Further
relative maxima of SCC(Q) are not so high as to make the
overdamping condition reappear at higher Q, which explains
why the acoustic excitations retain a propagative character at
all the other Q values investigated here.

Finally, in figure 4 we show the Q dependence of the
amplitudes Irel and Is of (18). Irel, the total intensity of
the Lorentzian line(s) in the quasielastic peak, follows the
oscillations of SCC(Q), while Is obviously has an opposite
phase due to the complementarity condition Irel + 2Is = 1.
For Q larger than Qp both quantities quite quickly approach
the values one and zero, respectively, indicating the weakening
of the sound excitations, which, however, are still present in
the whole Q range.

6. Conclusions

The critical review, carried out in [11], of current methods
for the analysis and the interpretation of collective-dynamics
spectra has led us to a rigorous definition of the quantities
that determine the properties of acoustic oscillations in fluids.
This approach has been applied here to the investigation of
such excitations in a wavevector range scarcely studied so far,
because of the widely spread assumption that the dynamic
structure factor of fluids does not, actually, show the presence
of any feature that can be evidently related to sound modes. On
the contrary, using MD data for the translational dynamics of
the simple molecular liquid deuteromethane, we have shown
here that such excitations exist and possess a propagative
character. However, their contribution to the total scattering is
strongly reduced with increasing Q, as the intensity associated
with the sound modes decays to zero following an oscillatory
pattern quite similar to that related to distinct correlations in
the static structure factor.

We have also shown that for Q values around Qp the
sound oscillations cross the transition from the under- to the
overdamped regime. This is mainly due to the strong decrease
of the renormalized ‘undamped’ frequency �, driven by the
presence of a high peak in SCC(Q). Although the latter is a
typical feature of dense insulating liquids, however, it cannot
be stated that such an overdamping should generally occur.
Indeed, even in the case of so highly structured a fluid as
liquid methane, the overdamping condition seems to be a rather
‘weak’ one, the dynamical behaviour being very close to a
‘critical damping’ situation, with � only slightly smaller than
the damping parameter zs. Not surprisingly, all subsequent
peaks of SCC(Q) are not able to produce again such a situation.
Thus, the existence of propagative sound modes at large Q
appears to be limited by the decay of their intensity rather than
by the vanishing of their frequency.

The disappearance of propagation in a rather restricted Q
range has never been reported so far for molecular liquids,
though it was predicted by a kinetic-theoretical approach [17]
in a hard-sphere system and found in a GRB analysis of
a simulated Lennard-Jones dense fluid [18] and of neutron
data on liquid argon [9]. However, we believe that a deeper
understanding of this dynamical phenomenon is obtained if
one interprets it, as done here, in terms of the damping state
variation of an equivalent harmonic oscillator, recognizing
the fundamental role of the quantities � and zs. It should
be noted that, in this respect too, the dynamic centre-of-
mass behaviour of fluid methane closely resembles that of
monatomic insulating liquids, as already pointed out in [12].

Another main result of this work is that the concept
of viscoelasticity, as implemented in (13), can account very
accurately for the translational dynamics of simple liquids
in a very wide Q range. On the other hand, we have also
shown that the density fluctuations of thermal origin slowly
lose importance while Q is increased, though displaying
oscillations in phase with those of the dispersion curve. In
the present case, the second term of (13) already ceases to
contribute to the memory function at Q of the order of 2Qp.

Indeed, all the quantities shown in the figures, as well
as other parameters not reported here, appear to reflect
directly the oscillatory behaviour of SCC(Q). This suggests
that structural properties have a strong relationship with the
whole dynamics and, in particular, that a direct link exists
between the presence of collective excitations of acoustic
character and that of structural correlations beyond the pure self
(i.e. single-molecule) ones. Such a relationship is obviously
well established at low Q, but, to our knowledge, was not
evidenced before in Q ranges above the main peak of the static
structure factor.

In conclusion, we have provided a detailed and consistent
picture, in a wide Q range, of the collective dynamics of
deuterated methane as obtained from accurate MD simulations
carried out with a realistic ab initio interaction potential. The
methods applied here are of general validity and applicable to
a variety of fluids. This result should stress the importance of
performing careful experimental determinations in as wide as
possible Q and ω ranges, in order to validate simulation results
that can give precious insight into unexplorable Q and ω ranges
or into experimentally inaccessible properties of real fluids.
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